翻訳と辞書 |
Artin–Zorn theorem : ウィキペディア英語版 | Artin–Zorn theorem In mathematics, the Artin–Zorn theorem, named after Emil Artin and Max Zorn, states that any finite alternative division ring is necessarily a finite field. It was first published by Zorn, but in his publication Zorn credited it to Artin.〔.〕〔.〕 The Artin–Zorn theorem is a generalization of the Wedderburn theorem, which states that finite associative division rings are fields. As a geometric consequence, every finite Moufang plane is the classical projective plane over a finite field.〔.〕〔.〕 ==References==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Artin–Zorn theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|